Math 250 - Sect.2.3: The Product and Quotient Rules, Higher Order Derivatives

I. The Product and Quotient Rules (MEMORIZE THESE!)

Deriving the Product Rule:

Product Rule:

Quotient Rule:
-examples- For each function, find the derivative (in simplest form)

1. $y=\left(3 x^{2}-5\right)(2 x+7)$
2. $f(t)=t^{2} \sin t$
3. $y=\frac{5 x+7}{3 x-4}$
4. $g(x)=\frac{\sin x}{\sqrt{x}}$
II. *NOW that we have the QUOTIENT RULE, we can DERIVE the differentiation formulas for the other trig functions.
-example- Find the derivative formula for $f(x)=\tan x$
-example- Derive the formula for $\frac{d}{d x}(\csc x)$

The other trig differentiation formulas can be derived using the same approach.

MEMORIZE:

1. $\frac{d}{d x}(\tan x)=\sec ^{2} x$
2. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
3. $\frac{d}{d x}(\sec x)=\sec x \tan x$
4. $\frac{d}{d x}(\csc x)=-\csc x \cot x$
-examples- Find each derivative:
a. $y=3 \csc x-5 \cot x$
b. $f(w)=w^{2} \sec w$

III. Higher Order Derivatives.

What do we call it when we take the DERIVATIVE of a DERIVATIVE FUNCTION?? We call it the SECOND derivative. We can take as many successive derivatives as we want!

Notation:
-example- Find the third derivative of $f(x)=5 x^{4}-3 x+\cos x$

Application: In section 2.2, we examined the fact that in motion problems, the derivative of the position function describes the velocity of an object. How about the derivative of the velocity function??

POSITION:

VELOCITY:
$($ Speed $=\longrightarrow)$

ACCELERATION:

-example- An automobile's velocity starting from rest is $v(t)=\sqrt{t} \cos t$, where v is measured in feet per second. Find the velocity and acceleration at $t=1,2,4$, and 6 seconds. Discuss the SPEED of the automobile at all of those times. Is the SPEED increasing or decreasing at each of those times?

